

31st International Conference on **Neural Information Processing**

December 2-6, 2024 · Auckland, New Zealand iconip2024.org

Test-Time Intensity Consistency Adaptation for Shadow Detection

Leyi Zhu¹, Weihuang Liu¹, Xinyi Chen², Zimeng Li³, Xuhang Chen^{1,4},

Zhen Wang⁴, and Chi-Man Pun^{1,*}

1 University of Macau, Macao, China

2 Southern University of Science and Technology, Shenzhen, China

3 Shenzhen Polytechnic University, Shenzhen, China

4 Huizhou University, Huizhou, China

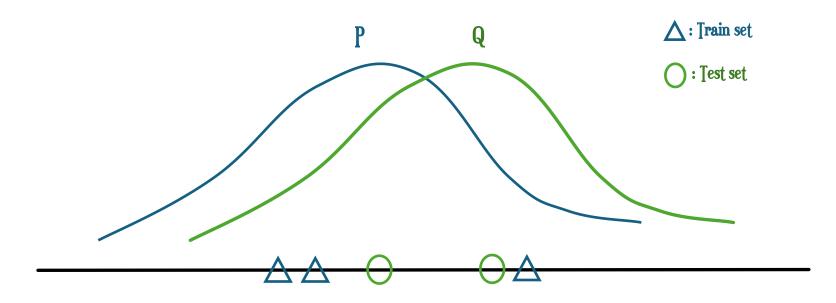
Sponsors:

University

Outline

- Introduction
- Contributions
- Method
- Results
- Visualization

Introduction: Distribution Shifts



- In theory assumption: same distribution for training and testing.
- In real-world samples: distribution shifts with unseen variants.

Introduction: Intensity Bias

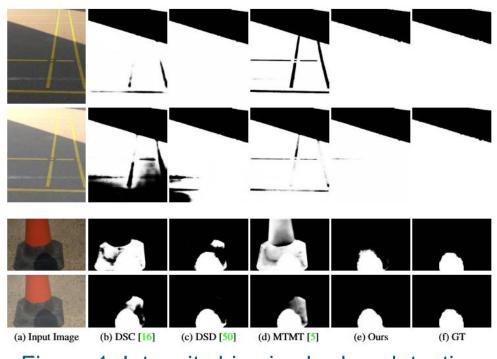


Figure 1. Intensity bias in shadow detection.

Mitigating Intensity Bias in Shadow Detection via Feature Decomposition and Reweighting (Lei Zhu et al. 2021ICCV)

Sponsors: g.t

Supported by:

Nottingham Trent

University

Asia Acific Neural

Introduction: Test-Time Adaptation

standard test error = $\mathbb{E}_{Q} [\ell(x, y); \theta]$ TTA test error = $\mathbb{E}_{Q} [\ell(x, y); \theta(x)]$

- Does not include the test distribution set during training.
- The test sample x gives us a hint about Q.
- No fixed model, but adapt at test time.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts (Yu Sun et al. 2020ICML)

Sponsors: Q

Supported by:

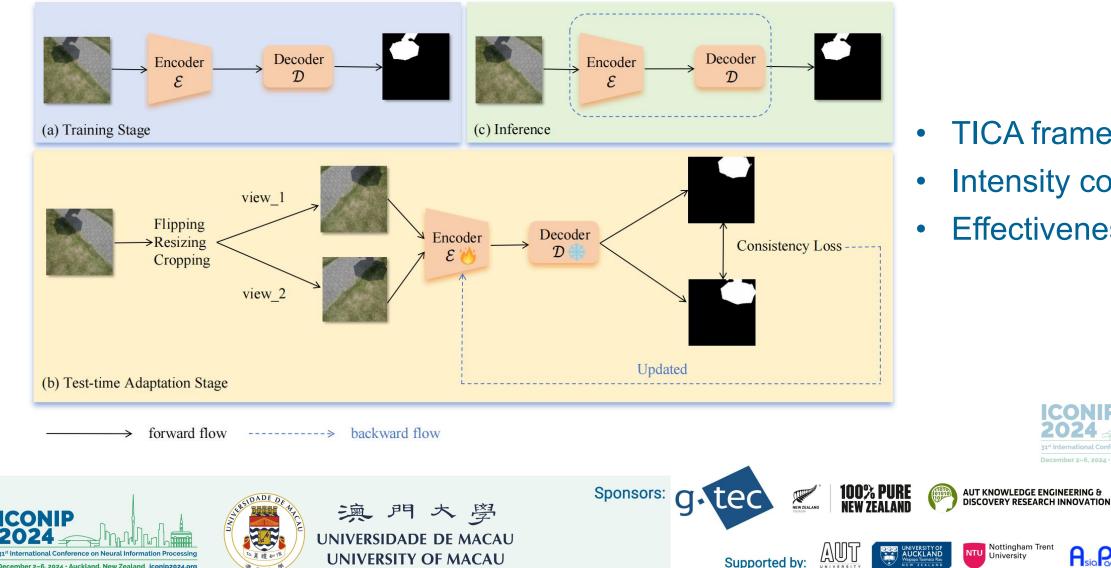
AUT KNOWLEDGE ENGINEERING & DISCOVERY RESEARCH INNOVATIO

Nottingham Trei

Springer

Contributions: Our TICA

December 2-6, 2024 · Auckland, New Zealand iconip2024.org



- **TICA** framework
- Intensity consistency

nher 2-6 2024 · Auckland New Zealand iconin2024 or

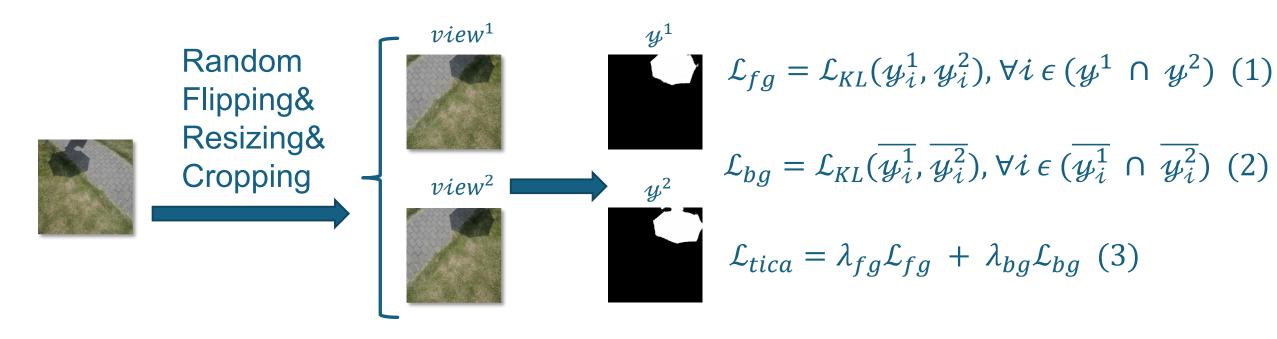
Asia Pacific Neural Network S

Springer

Effectiveness

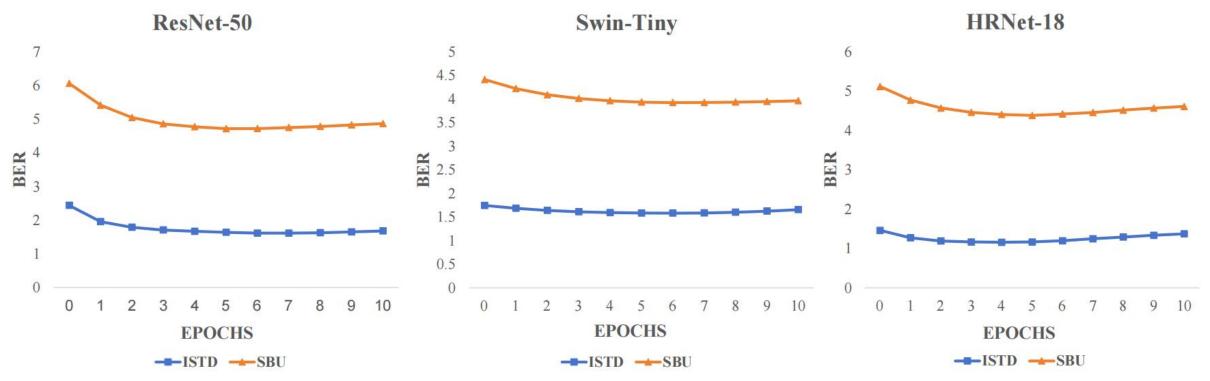
Nottingham Trent

Method: Intensity Consistency



 Intensity consistency on both foreground and background between two augmented images.

Results: TICA Ablation Studies



• The impact of the proposed TICA fluctuates with the number of epochs.

Results: TICA Ablation Studies

 Table 1. Ablation study using variable intensity consistency strategy on different backbone models across two public datasets.

	Resl	Net-5	0 as	Backbone	Swir	n-Tiny	as	Backbone	HRN	Net-1	8 as	Backbone
	-	\mathbf{FC}	BC	both	-	FC I	BC	both	-	\mathbf{FC}	BC	both
ISTD	2.45	1.93	1.65	1.64	1.76	$1.96\ 1$.58	1.59	1.47	1.43	1.17	1.17
SBU	6.07	4.70	4.83	4.72	4.44	3.93 3	.98	3.94	5.14	4.37	4.47	4.38

 Ablation studies results of intensity consistency strategy in different backbone (ResNet-50, Swin-Tiny and HRNet-18).

Results: Comparison with SOTA TTA

 Table 2. Compare the BER with the SOTA TTA methods for shadow detection.

3	ResNet-50 as Backbone					Swin-Tiny as Backbone						HRNet-18 as Backbone			
	-	TENT	ETA	BN	Ours	-	TENT	ETA	BN	Ours	-	TENT	ETA	BN	Ours
ISTD	2.45	1.97	1.82	1.79	1.64	1.76	1.97	1.75	1.73	1.59	1.47	1.29	1.20	1.20	1.17
SBU	6.07	5.46	5.18	5.41	4.72	4.44	4.02	4.04	4.32	3.94	5.14	5.40	4.93	5.55	4.38

• Comparison with SOTA TTA in different backbone (ResNet-50, Swin-Tiny and HRNet-18).

TENT Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time adaptation by entropy minimization. In: ICLR (2021) **ETA** Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., Tan, M.: Efficient test_x0002_time model adaptation without forgetting. In: ICML (2022) **BN** Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. NeurIPS (2020)

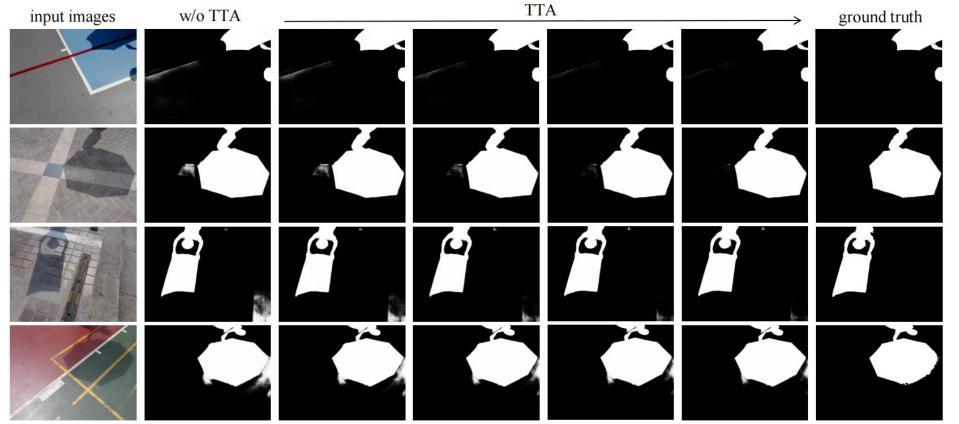
Results: SOTA Shadow Detectors Comparison

Table 3. Comparing our method with the SOTA shadow detectors.

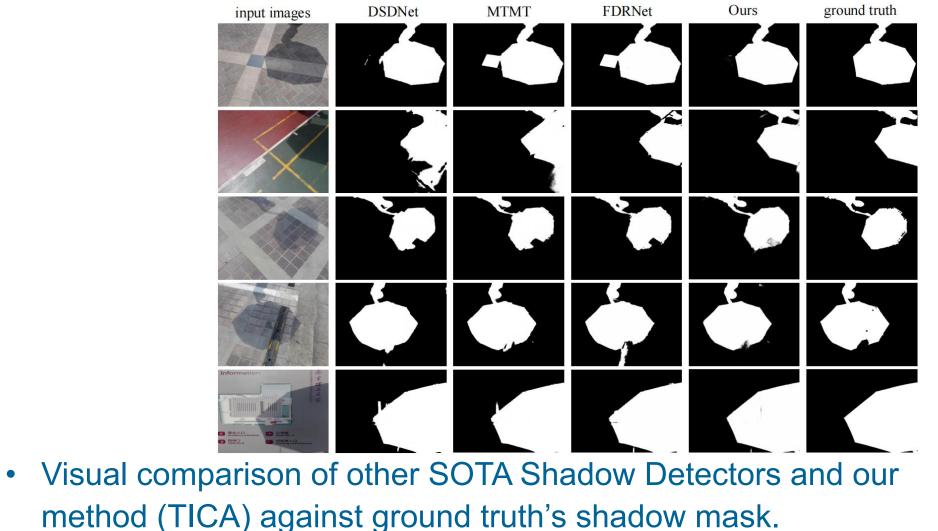
Method	Backbone	ISTD SBU
DSC 44	VGG16 77	3.42 5.59
DSD 55	ResNeXt-101 78	2.17 3.45
MTMT 65	ResNeXt-101 78	1.72 3.15
FDRNet 42	EfficientNet-B3 79	1.55 3.04
FCSDNet 80	ResNeXt101 78	1.69 3.15
	ResNet-50 71	1.64 4.72
Ours	Swin-Tiny 72	1.59 3.94
	HRNet-18 73	1.17 4.38

DSC Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: CVPR (2018)
DSD Zheng, Q., Qiao, X., Cao, Y., Lau, R.W.: Distraction-aware shadow detection. In: CVPR (2019)
MTMT Chen, Z., Zhu, L., Wan, L., Wang, S., Feng, W.: A multi-task mean teacher for semi-supervised shadow detection. In: CVPR (2020)
FDRNet Zhu, L., Xu, K., Ke, Z.: Mitigating intensity bias in shadow detection via feature decomposition and reweighting. In: ICCV (2021)
FCSDNet Valanarasu, J.M.J., Patel, V.M.: Fine-context shadow detection using shadow re_x0002_moval. In: WACV (2023)

Visualizations: TICA Fine-Tuning



Visualizations: with SOTA Shadow Detectors



Asia Pacific Neural Network Society

✓ Springer

Sponsors: g.tec

Supported by:

AUT KNOWLEDGE ENGINEERING & DISCOVERY RESEARCH INNOVATION

Nottingham Trent

NTU University

AUCKLAND

31st International Conference on Neural Information Processing

December 2-6, 2024 · Auckland, New Zealand iconip2024.org

Thank you for listening!

Q & A

