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Introduction: Distribution Shifts

• In theory assumption: same distribution for training and testing. 
• In real-world samples: distribution shifts with unseen variants.

P Q : Train set

: Test set



Mitigating Intensity Bias in Shadow Detection via 
Feature  Decomposition and Reweighting (Lei Zhu et al. 2021ICCV)

Introduction: Intensity Bias

Figure 1. Intensity bias in shadow detection.



• Does not include the test distribution set during training.
• The test sample � gives us a hint about �.
• No fixed model, but adapt at test time.

standard test error = ��  [ℓ(�, �);  �]
TTA test error = ��  [ℓ(�, �);  �(�)]

Introduction:  Test-Time Adaptation

Test-Time Training with Self-Supervision for 
Generalization under Distribution Shifts (Yu Sun et al. 2020ICML)



Contributions: Our TICA 

• TICA framework 
• Intensity consistency
• Effectiveness 



• Intensity consistency on both foreground and background between 
two augmented images.  

Method: Intensity Consistency
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• The impact of the proposed TICA fluctuates with the number of
epochs.  

Results: TICA Ablation Studies



• Ablation studies results of intensity consistency strategy in different 
backbone (ResNet-50, Swin-Tiny and HRNet-18).

Results: TICA Ablation Studies



• Comparison with SOTA TTA in different backbone (ResNet-50, Swin-Tiny 
and HRNet-18).

Results: Comparison with SOTA TTA
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Results: SOTA Shadow Detectors Comparison 
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Visualizations: TICA Fine-Tuning 

• Qualitative comparison of the fine-tuning results and ground truth 

for TICA over five epochs.



Visualizations: with SOTA Shadow Detectors 

• Visual comparison of other SOTA Shadow Detectors and our 
method (TICA) against ground truth’s shadow mask.
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