High-Fidelity Document Stain Removal via A Large-Scale Real-World Dataset and A **Memory-Augmented Transformer**

Mingxian Li¹

¹Huizhou University

Abstract

Document images are often marred by stains, reducing readability and complicating digitization and analysis. The lack of a comprehensive dataset has hindered effective stain removal while preserving details. To overcome this, we introduce StainDoc, a high-resolution dataset for stain removal, featuring over 5,000 pairs of stained and clean document images with diverse stains. This dataset aids in training robust stain removal algorithms. We also propose StainRestorer, a Transformer-based approach using a memory-augmented Transformer to capture hierarchical stain representations via the DocMemory module. The Stain Removal Transformer (SRTransformer) employs enhanced spatial and channel attention mechanisms for precise stain removal while maintaining content integrity. StainRestorer outperforms existing methods on the StainDoc dataset, setting a new benchmark. Our work underscores memory-augmented Transformers' potential in this field and contributes a valuable dataset for future research.

Main Contributions

- StainDoc We present StainDoc, the first large-scale, high-resolution (2145×2245) dataset for document stain removal. It includes over 5,000 pairs of stained and clean documents from various scenes, stains, severities, and backgrounds, addressing a critical need in document enhancement.
- **DocMemory** Our DocMemory module captures hierarchical stain representations through Memory Units, extracting and analyzing deep features at different granularities.
- **SRTransformer** The Stain Removal Transformer (SRTransformer) improves spatial mapping for precise stain removal, distinguishing stains from document details, ensuring high-quality results while preserving content integrity.

StainDoc Dataset

Figure 1. Example from StainDoc dataset: (a) stained document image, (b) clean original image. Dataset creation involves: (a) applying stains and preparing documents, (b) controlled-condition photography, (c) post-processing and standardization.

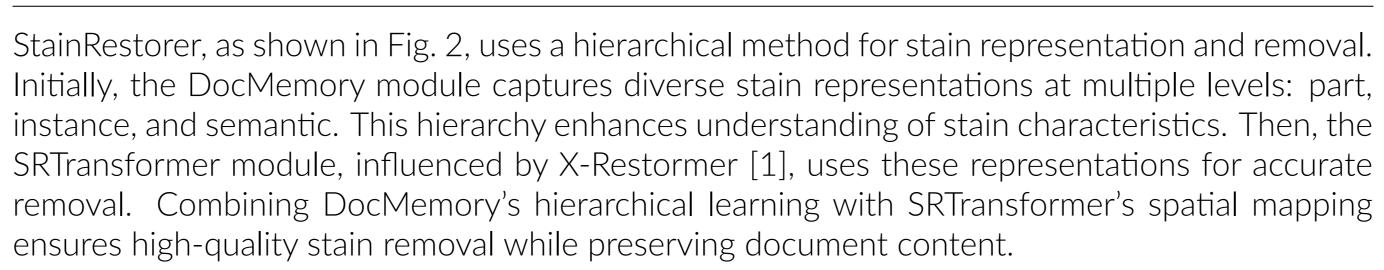
https://github.com/CXH-Research/StainRestorer

Hao Sun¹ ²The Ohio State University

Xiaofeng Zhang³ Yingtie Lei²

³Shanghai Jiao Tong University

Methodology



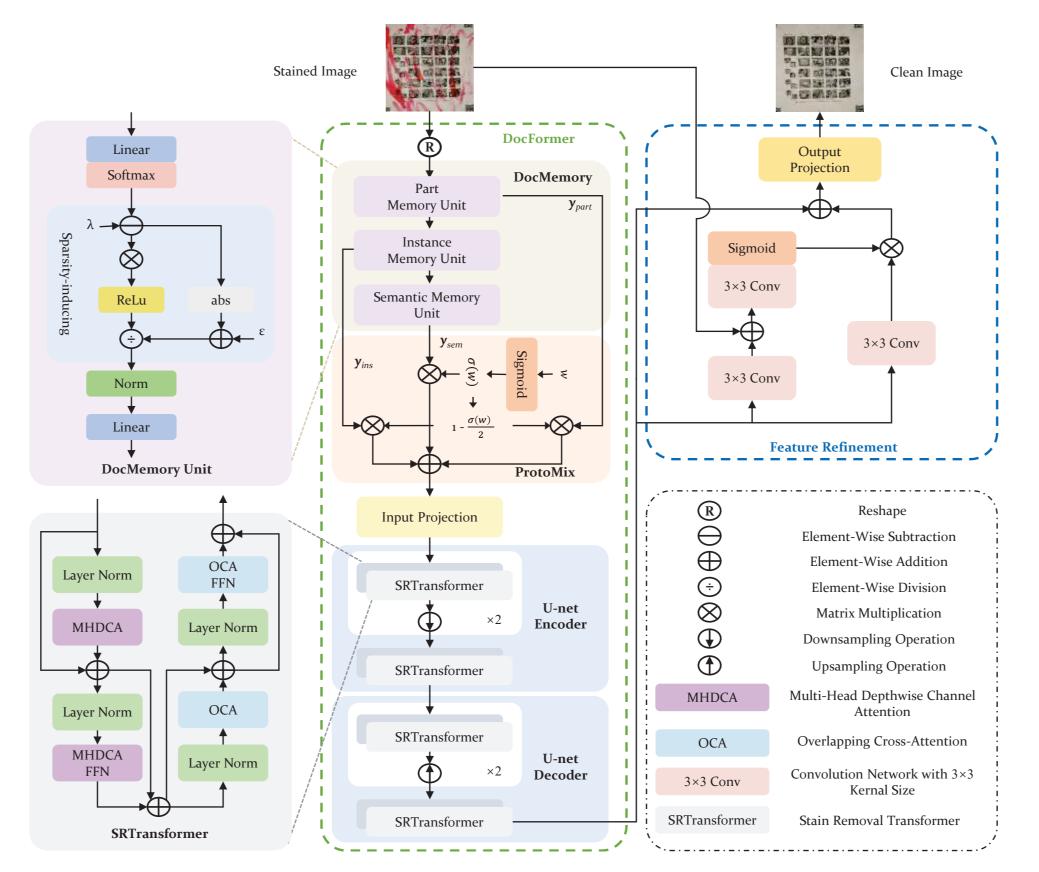


Figure 2. StainRestorer's architecture features a DocMemory module for hierarchical stain representation and an SRTransformer for accurate removal. DocMemory captures part, instance, and semantic-level stain features, which are fused using ProtoMix. SRTransformer uses these to precisely remove stains while preserving content.

StainRestorer is trained using a composite loss function that balances pixel-wise accuracy and the preservation of structural information. This is achieved by combining the Mean Squared Error (MSE) loss \mathcal{L}_{MSE} and the Structural Similarity Index Measure (SSIM) loss \mathcal{L}_{SSIM} .

$$\mathcal{L}_{total} = \mathcal{L}_{MSE}(\hat{I}, I) + \alpha \cdot \mathcal{L}_{SSIM}(\hat{I}, I), \qquad (1)$$

where α is a weighting factor controlling the relative importance of the SSIM loss. Empirically, α is set to 0.2.

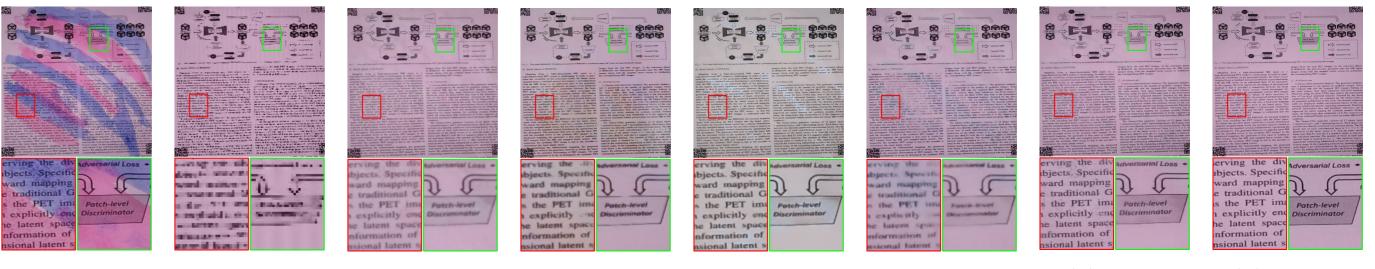
Yihang Dong⁴ Yilin Zhou¹ Zimeng Li⁵ Xuhang Chen¹

⁴Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

⁵Shenzhen Polytechnic University

Method	StainDoc				StainDoc_Mark				StainDoc_Seal			
	PSNR ↑	SSIM ↑	MAE↓	LPIPS ↓	PSNR ↑	SSIM ↑	$MAE\downarrow$	LPIPS ↓	PSNR ↑	$SSIM\uparrow$	MAE↓	LPIPS ↓
Input	18.372	0.757	17.59	0.194	22.198	0.703	11.277	0.389	24.875	0.904	4.852	0.143
DocTr++	14.012	0.43	32.057	0.692	14.927	0.348	29.097	0.767	16.861	0.518	18.634	0.534
DocEnTR	15.173	0.514	34.955	0.84	16.095	0.545	29.643	0.775	17.424	0.558	20.126	0.686
TextDIAE	15.953	0.541	24.836	0.656	16.253	0.497	24.397	0.703	16.863	0.558	20.918	0.622
Kligler	16.285	0.713	26.313	0.234	18.255	0.631	22.611	0.429	20.219	0.852	16.323	0.194
DocDiff	16.662	0.607	25.609	0.359	17.646	0.658	23.842	0.435	12.891	0.458	44.894	0.673
illtrtemplate	17.374	0.616	16.919	0.391	17.832	0.593	20.844	0.601	17.919	0.61	17.246	0.521
GAN_HTR	17.377	0.724	23.261	0.374	24.809	0.848	12.321	0.191	10.583	0.672	60.194	0.514
DocTr	17.87	0.597	20.812	0.601	16.866	0.613	16.736	0.38	16.879	0.613	16.734	0.383
DeepOtsu	20.747	0.767	16.278	0.25	22.803	0.829	9.468	0.238	22.187	0.863	14.296	0.214
DocProj	22.127	0.781	12.996	0.227	21.048	0.702	16.435	0.432	27.052	0.901	6.604	0.113
DocNLC	22.45	0.781	11.378	0.232	22.031	0.72	13.866	0.407	<u>27.854</u>	<u>0.912</u>	<u>5.569</u>	<u>0.097</u>
DocRes	22.612	0.792	11.378	0.198	23.159	0.751	11.667	0.343	27.696	0.908	5.646	0.098
GCDRNet	22.619	0.802	11.077	0.187	26.194	<u>0.893</u>	<u>6.629</u>	<u>0.121</u>	23.675	0.86	12.141	0.184
DE-GAN	22.62	<u>0.819</u>	11.209	<u>0.154</u>	23.421	0.842	8.947	0.213	22.123	0.844	12.774	0.202
UDoc-GAN	<u>22.834</u>	0.803	10.608	0.189	25.94	0.88	6.888	0.142	26.391	0.881	8.399	0.142
Ours	23.372	0.822	9.265	0.085	34.191	0.955	2.786	0.067	33.298	0.968	2.441	0.024

Table 1. Quantitative comparison of different methods. The best results are highlighted in bold, and the second best results are underlined.



(a) Input

(b) illtrtemplate (c) DocNLC (d) GCDRNet (e) DEGAN (f) UDoc-GAN (g) Ours

Figure 3. Qualitative comparison of stain removal performance across different models.

- arXiv:2309.01377, 2023.

Results

(h) Target

References

[1] Xiangyu Chen, Zheyuan Li, Yuandong Pu, Yihao Liu, Jiantao Zhou, Yu Qiao, and Chao Dong. A comparative study of image restoration networks for general backbone network design. In European Conference on Computer Vision, pages 74–91. Springer, 2025.

[2] Xiao Feng Zhang, Chao Chen Gu, and Shan Ying Zhu. Memory augment is all you need for image restoration. *arXiv preprint*