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Abstract
Translating medical images across different
modalities is crucial for synthesizing missing
data and aiding clinical diagnosis, but exist-
ing techniques often fail to capture cross-modal
and global features and are typically tailored
to specific modality pairs, limiting their prac-
tical utility. To address these challenges, we
introduce MedPrompt, a multi-task frame-
work designed for efficient translation among
diverse modalities. MedPrompt incorporates a
Self-adaptive Prompt Block that dynam-
ically guides the translation network to han-
dle various modalities effectively. We also in-
troduce the Prompt Extraction Block and
Prompt Fusion Block to efficiently encode
cross-modal prompts, and leverage the Trans-
former model to enhance global feature ex-
traction across modalities. Extensive exper-
iments on five datasets covering four modal-
ity pairs demonstrate that MedPrompt achieves
state-of-the-art visual quality and exhibits ex-
cellent generalization capability, highlighting its
effectiveness and versatility in cross-modal med-
ical image translation.

Conclusion
We present MedPrompt, a simple yet highly
effective multi-task framework for medical im-
age translation that achieves state-of-the-art
performance across various modalities. Lever-
aging Transformer models and efficient cross-
modal feature extraction through prompting,
MedPrompt demonstrates excellent generaliza-
tion capability. Key components include the
Prompt Extraction Block (PEB), which gen-
erates modality-specific prompt weights for se-
lective information extraction, and the Prompt
Fusion Block (PFB), which dynamically fuses
prompts relevant to the target modality. These
innovations enhance multi-task learning, allow-
ing MedPrompt to outperform existing methods
with a single training process. Our future work
will explore more effective prompt methods to
further boost performance and applicability in
multi-task medical image translation.
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Figure 1: The MedPrompt pipeline follows a conventional encoder-decoder framework. During training,
we input all the distinct modalities of the cross-modal dataset. To enhance the model’s performance, we
introduce the Self-adaptive Prompt Block (SPB) after the 4-level encoder. Additionally, we propose the
Prompt Extraction Block (PEB) and Prompt Fusion Block (PFB) to effectively encode and aggregate prompt
information from multiple modalities. Each SPB connects the transformer blocks in the encoder, allowing
prompt information to propagate between decoders. This process ultimately leads to the generation of high
quality results.

Analysis

Table 1: Quantitative evaluation on SynthRAD2023 dataset.

Method
SynthRAD2023 Task1 SynthRAD2023 Task2

MRI → CT CT → MRI CBCT → CT CT → CBCT
PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓

CycleGAN 9.40 0.17 69.07 11.58 0.28 48.34 10.36 0.21 64.19 10.77 0.23 63.54
Pix2Pix 10.04 0.19 65.80 12.36 0.32 43.91 10.42 0.21 63.45 11.29 0.28 58.20
UNIT 9.65 0.17 67.91 12.50 0.31 42.17 10.29 0.20 64.74 10.94 0.24 62.60
MUNIT 10.12 0.20 64.97 12.49 0.31 42.65 10.46 0.21 62.98 11.24 0.27 57.88
FUNIT 8.93 0.04 75.22 8.47 0.11 74.19 10.28 0.46 64.58 9.88 0.44 70.57
U-GAT-IT 21.45 0.76 13.07 16.68 0.51 26.10 23.37 0.81 12.45 20.83 0.69 21.13
CUT 14.14 0.42 44.87 11.43 0.29 45.21 21.03 0.74 18.27 20.37 0.70 21.48
LPTN 16.79 0.56 24.33 13.37 0.34 36.74 22.15 0.79 14.31 21.28 0.71 18.59
medSynth 15.11 0.34 32.79 15.81 0.40 29.52 20.52 0.71 20.70 19.90 0.68 21.62
pGAN 20.78 0.73 15.04 18.19 0.55 20.10 21.49 0.75 14.93 20.71 0.68 19.78
RIED-Net 22.70 0.80 10.84 16.99 0.54 22.93 22.46 0.82 12.56 20.50 0.72 19.81
ResViT 22.98 0.79 10.39 18.88 0.58 17.59 24.15 0.82 9.80 22.87 0.72 15.58
Ours 23.33 0.83 10.63 19.99 0.66 15.91 24.67 0.85 9.83 23.95 0.79 13.35

(a) Input (b) pGAN (c) ResViT (d) Ours (e) GT

Figure 2: We conducted a visual comparison of different image enhancement methods using five distinct
datasets. It is apparent that, in comparison to pGAN (b) and ResViT (c), our proposed method (d) demon-
strates successful reconstruction of the target with remarkable fidelity.
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