The 34th International Joint Conference on Artificial Intelligence ]
16th-22th August 2025, Montreal, Canada Paper ID: 651

Jiesong Bai'?, Yuhao Yin?, Yihang Dong', Xiaofeng Zhang3,
Chi-Man Punz , Xuhang Chen'4

1TUM 2SHU 3 SJTU 4HZU

Introduction Results

% Lensless imaging avoids the use of lenses altogether and instead uses = & Dataset

computational algorithms to reconstruct scenes. However, > DiffuserCam, MWDNs. Both datasets undergo a standard

» Adaptability of the PSF (Point Spread Function): Traditional methods preprocessing pipeline to ensure consistent input dimensionality,
rely on static or pre-calibrated PSF models, making them difficult to facilitating a robust and fair comparison of lensless imaging strategies.
adapt to real-world imaging conditions such as illumination variations, =, Comparison with Other Methods

sensor noise, resulting in degraded reconstruction quality.
Table 1: Performance comparison on two datasets: DiffuserCam and MWDNs. Metrics include PSNR (dB), SSIM, and LPIPS. Best results

> High-frequency recovery bottlenecks: While existing deep learning- =~ “cmemeredneamin

based reconstruction methods have made progress, they still suffer Method DiffuserCam MWDNs
from blurring or loss of high-frequency information. PSNRT SSIMT LPIPS| | PSNRT SSIMP LPIPS]
Wiener [1949] 1.33 0.083 0.770 9.44 0.045 0.731
Scene e e Measurement Vanilla GD 1327 0432 0585 | 1670  0.503  0.429

Nesterov GD [1998] 12.16 0.394 0.518 17.06 0.671 0.362

Camera FISTA [2009b] 11.09 0341 0554 | 1625 0.697  0.368
ADMM [2011] 1276 0442 0541 | 1776  0.638  0.343

k] B APGD [2015] 12.13 0385 0518 | 17.34  0.448  0.439
6 TikNet [2020] 1975 0720 0221 | 2657 0913  0.075

' FlatNet [2020] 21.16 0720 0231 | 19.08 0.841  0.178
RETAY : LenslessGAN [20211 2251  0.737  0.193 | 2749 0913  0.077
V' ) UDN [2022] 2000  0.688 0250 | 2698 0908  0.081

[ ~/ MWDN [2023] 2574 0816  0.132 | 31.74 0957  0.030
LensNet 2746  0.863  0.099 | 3322 0960  0.024

o BN .

* Implementation Study
Measurement Neural Reconstruction Table 2: Ablation Study on LensNet
Network 30 *LensNet
. LensNet
s Metiioes PSNRT SSIMT LPIPS|
ThreeDown 25.68 0.910 0.084
25 LenslessGAN w/o RecB 30.36 0.945 0.044
_ = woriginal PSF | 31.92  0.954  0.031
= URiRkNet Ours 3322 0960  0.024
~
Z 20 -
7 FlatNet ; .
A Table 4: Comparison of Parameter Count and FLOPs
< Our method: We propose a novel end-to-end deep learning framework = 2 Gradient Descens Method “arams (V) ROTS (%)
. . . . 1S APSD ©ADMM Ours 31.18 115.10
(LensNet) for lensless imaging that dynamically captures multi-scale i FlatNet 50.13 220 42
features in both spatial and frequency domains, substantially improving R rrr- - e
the fidelity and accuracy of image reconstructions over conventional 10 Learning-based Methods TikNet 59.13 220.42
methods _— v LensNet (Ours) UDN 1.04 237
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