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Abstract
Specular highlight removal plays a pivotal role in multimedia applications, as
it enhances the quality and interpretability of images and videos, ultimately
improving the performance of downstream tasks such as content-based re-
trieval, object recognition, and scene understanding. Despite significant ad-
vances in deep learning-based methods, current state-of-the-art approaches
often rely on additional priors or supervision, limiting their practicality and
generalization capability. In this paper, we propose the Dual-Hybrid Atten-
tion Network for Specular Highlight Removal (DHAN-SHR), an end-to-end
network that introduces novel hybrid attention mechanisms to effectively
capture and process information across different scales and domains with-
out relying on additional priors or supervision. DHAN-SHR consists of two
key components: the Adaptive Local Hybrid-Domain Dual Attention Trans-
former (L-HD-DAT) and the Adaptive Global Dual Attention Transformer
(G-DAT). The L-HD-DAT captures local inter-channel and inter-pixel de-
pendencies while incorporating spectral domain features, enabling the net-
work to effectively model the complex interactions between specular high-
lights and the underlying surface properties. The G-DAT models global
inter-channel relationships and long-distance pixel dependencies, allowing
the network to propagate contextual information across the entire image
and generate more coherent and consistent highlight-free results. To eval-
uate the performance of DHAN-SHR and facilitate future research in this
area, we compile a large-scale benchmark dataset comprising a diverse range
of images with varying levels of specular highlights.
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Figure 1:The overall architecture of our proposed Dual-Hybrid Attention Network for Spec-
ular Highlight Removal.
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Figure 2:Illustration of the window shifting approach and the attention mask applied to the
pixel-wise shifting window attention.

Results
Table 1:The quantitative comparison results, arranging traditional methods in the upper
section and learning-based approaches below. The highest-performing results are empha-
sized in bold, while the second-best are underscored.

Method PSD (947images) SHIQ (1000images) SSHR (1000images)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Tan 5.44 0.218 0.746 5.47 0.483 0.823 10.87 0.778 0.357
Yoon 16.09 0.498 0.325 19.34 0.679 0.471 28.47 0.916 0.094
Shen 19.56 0.666 0.238 24.77 0.890 0.200 24.53 0.896 0.101
Shen 21.33 0.753 0.142 27.30 0.917 0.102 24.00 0.891 0.094
Yang 4.74 0.250 0.893 5.31 0.556 0.837 10.72 0.781 0.358
Shen 11.51 0.324 0.360 12.24 0.491 0.473 27.13 0.914 0.077
Akashi 17.48 0.565 0.334 21.78 0.700 0.460 29.46 0.924 0.076
Huo 20.16 0.767 0.182 23.80 0.909 0.154 18.62 0.804 0.281
Fu 15.24 0.688 0.146 16.40 0.724 0.306 26.15 0.910 0.076
Yamamoto 18.37 0.541 0.274 25.49 0.858 0.201 26.95 0.902 0.094
Saha 15.98 0.455 0.314 22.05 0.832 0.287 23.38 0.886 0.110
SLRR 13.25 0.571 0.235 14.74 0.724 0.283 26.16 0.916 0.060
JSHDR* 22.78 0.811 0.089 37.97 0.980 0.034 26.43 0.301 0.059
SpecularityNet 23.58 0.838 0.085 30.92 0.963 0.058 31.07 0.941 0.041
MG-CycleGAN 22.12 0.815 0.085 26.80 0.935 0.091 28.40 0.874 0.092
Wu 23.93 0.863 0.062 31.57 0.965 0.059 33.45 0.951 0.028
TSHRNet 23.30 0.826 0.097 34.57 0.972 0.044 33.32 0.950 0.036
AHA 20.79 0.845 0.084 21.42 0.903 0.165 31.57 0.944 0.035
Ours 25.28 0.883 0.049 33.81 0.975 0.039 36.48 0.964 0.023
* JSHDR’s source code is not publicly available; the results are obtained from an executable
file provided by its authors.
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Figure 3:Visual comparative analysis of our method against leading SOTA approaches, high-
lighting our superior ability to remove specular highlights while preserving the original image’s
color tone, structure, and crucial details, such as text clarity on reflective surfaces.

Conclusion
DHAN-SHR leverages novel adaptive hybrid attention mechanisms, excelling
at capturing both local and global dependencies, and at the same time, in-
corporating spectral domain features to effectively model complex interac-
tions between specular highlights and surface properties. We assembled an
extensive benchmark dataset combining images from three different high-
light removal datasets. Experimental results demonstrate that DHAN-SHR
outperforms 18 state-of-the-art methods across various test datasets, both
quantitatively and qualitatively.
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